A mathematical model for the prospects of trachoma elimination through mass treatment targeted at children

Laing Lourens
BSc Mathematical Statistics (NMMU)
BSc Hons Biomathematics (Stell.)
MIT Big Data Science (UP) *
Trachoma

- What is it
 - Leading infectious cause of blindness
 - inside of the eyelid may be scarred so severely that the eyelid turns inward and the lashes rub on the eyeball, scarring the cornea

![Images of trachoma symptoms](image-url)
Trachoma

• How does it spread?
 – Direct contact with discharge from eyes, nose and throat of infected persons
 – Aerosolized pathogens from nasal infections
 – Active transfer of bacterium due to flies

• Prevalence
 – 21.4 million active infections
 – 1.2 million suffering blinding
 – Endemic in 53 countries as of 2012
Trachoma

• Prevalence
 – Highly prevalent in children
 – Children form core group for transmission

• WHO Eradication Strategy
 – GET 2020
 – SAFE strategy
 – Mass Drug Administration:
 Oral dose of Azithromycin (~95% efficacy)
 – ANNUAL treatment of ALL individuals if ...
Problem Statement

• Can antibiotic treatment targeted at children alone eliminate trachoma infection from an entire community?
Data

- **Trachoma Amelioration in Northern Amahara (TANA) study:**
 - Investigation of the impact of 1 year of *quarterly* single dose oral azithromycin treatment in children aged 1-9 on adult trachoma prevalence
 - 24 subkebeles in randomized trial with control group

<table>
<thead>
<tr>
<th></th>
<th>Child treatment group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child prevalence</td>
<td>3.6% (95% CI: 0.8–6.4)</td>
<td>45.6% (95% CI: 36.7–54.5)</td>
</tr>
<tr>
<td>Adult prevalence</td>
<td>8.2% (95% CI: 5.1–11.4)</td>
<td>12.7% (95% CI: 8.9–16.6)</td>
</tr>
</tbody>
</table>
Model

- Susceptible-infected-susceptible (SIS)

- 2 age classes
 - Adults
 - Children
Parameters

Recovery
\[\gamma_c y_c = r_1 \]
\[\gamma_a y_a = r_2 \]

Transmission
\[(\beta_{a\rightarrow c} \frac{y_a}{N_a} + \beta_{c\rightarrow c} \frac{y_c}{N_c}) x_c = r_3 \]
\[(\beta_{a\rightarrow a} \frac{y_a}{N_a} + \beta_{c\rightarrow a} \frac{y_c}{N_c}) x_c = r_4 \]

\(y_a \): Infected Adults
\(y_c \): Infected Children
\(x_c \): Susceptible Children
\(x_a \): Susceptible Adults
\(N_a \): Adult Population
\(N_c \): Children Population
Simulation

- Each village simulated for 100 months to allow the model to reach a state of endemic quasi-equilibrium
 - One absorbing state (epidemic extinction)

- After reaching quasi-equilibrium:
 - Simulated mass administration of azithromycin to children
 - Months 0, 3, 6 and 9
 - Repeated simulations averaged to derive the estimated adult and child prevalence
Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial Value</th>
<th>Final Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult recovery γ_a</td>
<td>0.25 yr</td>
<td>0.64 yr</td>
</tr>
<tr>
<td>Child recovery γ_c</td>
<td>0.083 yr</td>
<td>0.23 yr</td>
</tr>
<tr>
<td>Adult \rightarrow child transmission β_{ac}</td>
<td>0.125 yr</td>
<td>0.43 yr</td>
</tr>
<tr>
<td>Child \rightarrow child transmission β_{cc}</td>
<td>0.125 yr</td>
<td>0.32 yr</td>
</tr>
<tr>
<td>Child \rightarrow adult transmission β_{ca}</td>
<td>0.0625 yr</td>
<td>0.34 yr</td>
</tr>
<tr>
<td>Adult \rightarrow adult transmission β_{aa}</td>
<td>0.0625 yr</td>
<td>0.18 yr</td>
</tr>
<tr>
<td>Odds of consecutive treatment</td>
<td>1</td>
<td>3.58</td>
</tr>
<tr>
<td>Antibiotic efficacy</td>
<td>0.9</td>
<td>0.98</td>
</tr>
</tbody>
</table>
Results

Trachoma Prevalence with Mass Treatment

Prevalence

Years

Adults
Children
TANA children
TANA adult
Conclusion

- Quarterly MDA campaigns administered for 10 years can greatly reduce, possibly eliminate trachoma in adults

- Transmission involving children more likely than adults

- Child recovery much slower than adults
Thank you

Questions?